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A~~TRACT. Easily checkable sufficient stability criteria

are obtained for explicit dissipative approximations to mixed

initial-boundary value problems associated with the system

ut = A u~ 
in the quarter plane x> - 0, t > O .  The crite ria

are given entire ly in terms of the boundary conditions for

the outflow unknowns. The results imply that certain weU known

boundary conditions, when used In ccmibination with any (stable)

dissipative øcheme, always maintain stabilit y.
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0. Introduction

I

This paper provides a stability study of a idde class of difference

approvfm~tions for 
- 

a hyperbolic mixed initial-boundary vabie problem in

the quarter plane x >  0, t > 0. The approx!thiated differential system

is U
t 

Au~ where A is diagonal, and the Inflow and outflow unknowns

interact at the boundary. For the difference approximation we consider

general dissipative explicit two-level schemes, with general boundary

conditions which determine the boundary va]nes in terms of outflow values

at interior points. We show that such boundary conditions may have

arbitrary degree of accuracy. This is included in Section 1.

In Section 2 we begin to discuss stability. We show that the entire

approximation is stable if and only if the scalar components of its out-

flow part are; thus reducing the stability question to that of a scalar

outflow problem. Fran that point on, our aim will be to obtain easily

checkable sufficient stability criteria for the reduced problem. A].]. our

results are scheme-independent and are given exclusively In terms of the

outflow boundary conditions. The only such result that we know of , is

due to Kreiss ( ( 3] ;  see also (1]) who proved that for dissipative

schemes, boundary extrapolation always maintains stability.

In the remainder of Section 2 we state our main result and. consider

severa l examples. The main result is for the ease where the outflow

boundary conditions are translatory, i.e. , determined at all bound ary

points by the same procedure . The result states that if the outflow

boundary conditions are generated by a solvable stable scheme, then the

entire approximation is stable , independently of the interior scheme.

The examples cons idered show that if the out flow boundary conditio ns are

generated by oblique extra polation , by explicit or implicit Eule r schemes,
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‘~or by the Box-Scheme, then overall stability is assured.

In Section 3 we derive a preli-~ln*ry~ scheme-independent reaalt,

which is an explicit interpretation of Xr eias’ determinantal stabili4

criteria [4]. This result , which seems to be’ of independent interest,

is used in Section ~ to derive our stability criteria for the case of

trsnabatory bound ary conditions .

The theoretical basis for our work was given by ICreiss [ii- ] and by

Guatatsaon, Xreiss and Sundstr ~m [2]. We assume that the reader is

fami1iar with these papers.

In a forthcoming paper we discuss the extension of our results to

nondissipative and multi-level schemes.

We are grateful to Bj orn Engquist for many helpful discussions .

1. The Difference Approximat ion

Consider a first order hyperbolic system of partial differential

equations

(l.ia) ~u/~t~~~Mu,/~x, x > O ,~~~> O ,

where u (u(~~(x,t),...,u~0(x,t))1 is the transposed vector of un-

kno’wns, and A is a constant n x n Heraitian matrix of the form

0 xxA . 1  , A < 0 , A > 0 .
0 A11/

With out restriction we may assume that A is diagonal . .... ....

~~~~~
The solution of (i. is) is uniquely dete rmined if initial values ~ p

0
- 

.

(l.lb) u(x,O) 1(x), x~~~O ,

~~bt 
_ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _  ~L.
- 

- A
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3 .

and boundary conditions

(l.3.c) u1(0,t) Su11(O ,t) + g(t), t 
~ 
0,

are prescribed. Here the partition

— ~~~~~~~~~~~~~~~ u’1 =

corresponds to that of A, and S is an L x (n - t) iectanguiar matrix.

To solve the initial-boundary value problem (1) by a difference

approximation we introduce a mesh-size h .~~x >0 , k =A t >0 , such that

X k/h constant. Using the standard notation v
~(t) = v(vh,t), we

approximate (1. la) by a consistent two-sided difference scheme of the for*

v~(t + k) = Qv-~(t) , v =

(l.2a)
= 

j =~2r 
A~E

i
~ =

with initial values

(l.2b) v~(o) 0,1,2,... .

The A~ are fixed diagonal n x n matrices depending on A and on X

such that A , A~ are nonsingul.ar.

Throughout the paper we assume that Scheme (L2a) is dissipative, i.e.,

for some B > 0 and positive integer ci, the eigenvalues e(~) of the

amplification matrix

A ij~Q
~~

) =  ~~, A~e , -ir <~~ <ir,

satisfy

2w
< 1 — b it t

~~I~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — —~~ - —
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Since the A~ are diagonal, dies ipativity guarantees that the scheme

(1.2a) is stable.

In order to uniquely determine the solution of (1.2), we must spec-

ify , at each time step, the r boundary values v (t), s,~ — 0,l,..,r-1.

For the outflow unknowns we do it by boundary conditions of the form

(1.3) E ~~~ v1~ (t + k) — E C(0)v
I
~ (t), ~~~~~ 

— O,...,r-l,
—0 i.o

C~~ being fixed diagonal (n - e) x (n - j) matrices. For the inflow part

we use the physical boundary condition

(L)ia) v~(t) — Sv~
1(t) + g(t)

together with r-1 additional conditions of the form

(l.4b) vt(t) ~ D~~v
11(t) + g (t), — l,.. , r-l ,i IL

where are fixed L x (n - e) matrices and the g (t) depend on h

and cn g(t).

It is well known that using conditions of the general form (1.3),

can achieve at the boundary arbitrary degrees of accuracy. We note

that this is true also for conditions of type (l.4b). In fact, if accuracy

of order d is desired, then using the differential system and (l.lc),

w find that a Taylor expansion of a smooth solution of (1.1) yields 

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—- -.~ ~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _________
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j ia ax~

- ~~ (
~ (A1)~~ 4~’ (o,t) + o(h~~~)

— 
(u~~ (At) ’3 (S 

4 
uxx (o,t) + 4 g(t) ] + o(h~~)

• 3..0 • 
~t dt

— ~~ 
(u~i~~ (A1)’3 [S(A~

1)3 
4 u~ (o,t) + 4 g(t) ] + O(hd~~). . 

-

3 0  .

~~~~~~~ dt

Thus,(l.4b) follows upon approximating ~
3
/~x3ut1(O ,t) by linear combina-

tions of u~~ (t) ,. .  ,u~~(t) of the right accuracy. I ~
For example, if v~(t) is required to second order of accuracy, we

may use

~u~~(0~t) -3u~
1(t) + 4u~~(t) - u~

1(t) 
~
2u~’(o t) u~~(t) - 2u~~(t) + u~

1(t)

~x2 2h2 ‘

to obtain a second order accurate boundary condition

v~(t) — D0v~~(t) + D1v~~(t) + D2v~’(t) +

where

0 M0 M1+~~M2, D1 ~~~~~~ D2~~~~~ M1+~~ M2,

• • (A’~~
3 s(A”)3 , 3 - 0,1,2,

g1 (t) — g(t) + h(A1)’
~ ’ ~(t) + !~ (A’) 2 

~(t).

2. Statement of Main Result and ~bcem~ples

The difference approximation is completely defined now by the dies i-

pative (stable) scheme (1.2) together with the bounda ry conditio ns (1.3) ,

(1.4) , and we raise the question of overall stability in the sense of
% I Oustafseon at a].. ((2], Definition 3.3).
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Since the A3 are diagonal , we can split the scheme (l.2a) into

its inflow and outflow parts,

(2.1) ~~~~~~~~~~~~~~~~~~~~~~~~~ v — r ,r+l,...,

(2.2) ~~~ (t + k) = ~~ A~
1 v~~3 (t) , v —

jui-r
where

A3 - 
(A~ ~~ , -r < j  <p ,
~~O A~~/ 

-

corresponds to the partition of A. We iumied.iately see that the outflow

problem (2.2) , (1.3) is self contained, while the inflow problem (2.1),

(1.11) depends on the outflow part only to the extent that the outflow

computations provide the Inhomogeneous boundary values in (1. ii). Thus,

stability of the entire approximation is equivalent to the following

• separate questions :

(a) Stability of the inflow problem (2.1) ‘with inhomogeneous boundary

values.

(b) Stability of the outflow problem (2.2) (1.3).

Since the stabili ty definiti on (3.3) of (21 gives bounds for the

inhossogeneous boundary values, it sufficee , for the outflow problem, to

consider homogeneous boundary values. The A~ are diagonal, hence the

• problem split s into L independent dissipative approximations with

hamogeneous boundary values • It was shown by Kr eiss ([3], Theorem 5) that
• such scaler appro ximtiona are stable independently of the basic scheme.

Thus the inflow probiem is stable and it rema ins to consider (b) . Since

the ~~~ of (2.2) and the ~~~ of (1.3) are diagonal, the outflow prob-

]u splits as well.

I 
_____________ _____ 

______________________ ___________- 
•• •—~~~~-- _____ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________ 1
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We conclude that approximation (1.2) - (1.4) is stable if and only

if the n - I scaler components of its outflow pert are stable. So,

from now an, we may restrict the stability discussion to the following

scaler case ‘where we approximate an initial-value problem

(2.3) 
~~~~ a~~~ , a > 0 , x > O , t > o , u(x ,0) ~~f( x),

by a consistent dissipative scheme

+ k) — Qv~(t) , —

(2.ha)

~~~~~~~~~~~~~ Ev~~~ v 1,
j—-r “ v+

together with initial values

(2.4b) v~(o) — fl,, v — 0,1,2, . . . ,

and boundary conditions

(2.5) ~~ c~~~v + (t + k) — ~~ ~(0)~ + (t), — 0, . .. , r-l.
3—0 3—0

Here the a3 and the c~~ are constants depending on a and on A,.

• ~ ar purpose is to provide easily checkable sufficient stability

criteria for the approximation (2. 4) (2.5) ‘which depend entirely on the

boundary conditions (2.5). Particularly effective criteria of that

nature are obtained when the bound ary conditions are tr anslato ry, i.e. ,

of the form

(2.6) E c(’)v
IL+j( t +

~ t) — ~~ c~
0)v

IL+j
(t) , It — 0,..., r-l ,

3.0

where the 03 are independent of ~~. In order to state our main result

we introduce the boundary-scheme

-

~~ • • - —~~-— -—~- ~~~~~~
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~~~ v~(t + k) — T(0) v~(t), v — O,+1,+2,...,

(2.7)

Z~ J4~ E~, a - 0,1, Ev -‘  1,1—O V

• which generates the boundary conditions (2.6) upon restriction of v to.

the values 0,l,...,r-l.

We call the boundary scheme ~table if it is stable when applied to all

grid points vh, -. c v  c. This leads to

THEO~~M 2.1 (The Main Theorem). Approximation (2.4X2.6) is

stable if the boundary-scheme (2.7) is stable and if

(2.8) ~~~~~~ a ~~ ,c~ j1 0 V l ii i ~ 1.3—0

The stability criterion in this theorem is ~~~~~~~~~~~ of the basic

scheme. The proof, as well as other scheme-Independent results for the

tranalatory case, are given in Section ii.

Often , the boundary-scheme is biown in advance to be stable. Thus,

in applying Theorem 2. ., it only r~mi-1ns to verify the solvability-

condition (2.8).

If the boundary conditions are explicit, i.e., of the form

5
(2.9) v Ct + k) — E C

j 
v 

3
(t), —

IL+

then ~~~~~ a 1. Hence (2.8) is automatically fulfilled and Theorem 21

• reduces to

C~~OLIARY 2.2. If the boundary conditions (2.9) are generated by a

stable scheme 1 then appro ximation (2.4)(2.9) is stable.

EXAI(PLE 1. Determine the boundary conditions by oblique extrapolation :

~ 

•~~~~• . • •~~I • ..
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• (2.10) v (t + k) vM+l(t), I.’ — 0,...,r-1.

~ Clearly, t~e generating boundary-scheme i. explicit and uncondit ional ly

stable ; so by Corollary 2.2 the stab ility of (2.4)(2.lO) is assured.

Note that (2.10) is inconaistent with the differential equation

(2.3) unless Xa — 1 in which case (2.10) coincides with our next example.

EXAMPlE 2. Let the boundary conditions be generated by the right-

sided. explicit Euler scheme, i.e.,

(2.11) v (t + k) — ( )  + Aa(v~~1(t) - v (t)], ~,i O,...,r-l.

Since the basic scheme (2.4a) must satisfy the Courant-Friedricha-Levi

condition Aa < 1, Euler’ s scheme is stable too, and by Corol lary 2.2

the stability of (2 4)(2.ll) follows.

EXAMPLE 3. Take

(2.12) v(t +k) - Aa (v~~1(t+ k) -v (t+k)] =

IL. 0,...,r—1,

which is generated by the right-sided unconditionally stable implicit

Euler scheme. To comply with Theorem 2.1, we must have

V IK 1~~~l.

Since A a >  0, then ic with ‘~ 
c 1 gives

R e T ~~
) ( I c ) = l + X a ( l -R e K ) > l ,

so (2.5)(2.12) is stable .

EXAMPlE 4. We use the unconditionally stable Box-Scheme to generate

_ _
_ _________ ______J-
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o (2.13) v(t + k) + v 41(t + k) - Aa(v~~1(t + k) - v (t + k)]

— v (t)+v ~,,1(t)+Xa(v~~1(t)-v(t)], ¶L — O,..P,X-l.

Since 
-

R e T ~~
) (~c ) = l + R e K + X a ( l - R e K ) > 0  V I K I ~~~l,

then by Theorem 2.1 again, (2 .4)(2 .13) is stable .

In view of the previous stability discussion, Elr*mples 1-4 imply that

if the boundary conditions (1.3) are generated by oblique extrapolation,

explicit or implicit right-sided Euler schemes, or by the Box-Scheme, then

the entire approximatIon (1.2) - (1.4) is stable.

The boundary conditions in D~s~’plea 1-4 were studied by Gus tafsson

et al. (2] and by SktSllex~~ (5] in combination with ~~~~~ ~~~~~~~~~~~~
schemes.

3. A Preliminary Determinental Criteria

In order to investigate the stability of (2.4) , (2.5) we introduce

the space ~~(h) of all gr id functions

w (w~ );=~ 
with 11w112 a E I w~, 1

2 
<..

We write the approximation in operator form

v (t+k)=Gv (t),

where G:  i2(h) — ~~(h) is uniquely determined by (2. lea) and (2.5).

Following Xreiss ((4], Main Theorem) we will show that Q has no eigen-

values a with I z~ > 1. This will suffice to assure stability both in

the sense of (43 and in the sense of Definition 3.3 of (2].

• _____ • •~~ •
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To check the eigenvalues of G we must adopt Kreiu ’ recipe in

(4]: If a with t a t  > 1 is an eigenvalue, then for some nontrivial

g ~ ~~(h), Og — zg. Thus, by (2. l~a) and (2.5) , g must satisfy the

reaolvent equation

(3.1) 
!~r 

a
3
g~,~3 

v

end the bounda ry relations

5 5
(3.2) a E c~~

)g 
~~~ 

= ~~ c~~~g 
~~~~ 

= 0,...,r-l.
3=0 ~~~ I t . ,  j =~ ~~ ~~~~~~~

The ~~st general solution of (3.1) In ~~(h) can be written as

k~~~f
1

(3.3) g = E E o~~P~~(v)K~, V ~ 0 .V

Here the = ca(z)~ 1 < a  .c k, are the distinct roots of the character-

istic equation

p
(3.4) E a4~c~’ - z =

j=-r “

which satis fy 0 < t~c~I < 1, each with multiplicity ma = ma(z) ; the

P~~(v) are arbitrary polynomials in v with deg[P~~(v)] = ~; and the

are free coefficients yet to be determined. Since (2.4a) is dissipat-

ive and consistent with (2.3), we use Lemma 2 and part of the proof of

Le~~a 7 of (4] to find that for z with I z i  > 1, equation (3.4) has

precisely r roots ~c with 0 c I?c I <1. Thus g~ of (3.3) depends on

r parameters. Substituting (3.3) in (3.2), we obtain a linear hon~-

geneous system of r equations with the r unknowns o~~. The system

is of the form Jo’ = 0 where J J C a) is an r x r matrix and ~ is

the unknown vector. This yields

• 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

- _ ~~~~~~~~
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IZM4A 3.1 (Lemea 3, (4]). z with I z i  > 1 is en eigenvalue

• of 0 if end only if det J(z) ~i o.
Going through the above process , we make a particular choice of the

• polynomials P~~(v) that leads to an explicit expression of J which

later prove s useful . We choose

(3 .5) P~~(v) — 
~? ~~~~

Insert ing (3.5) in (3 .3) end then in (3.2) we obtain
n~ -1

(3.6) ~ (zc~~~ - ~~~~~~~~~~~~~~~~ ~~~ 0 , L
—

which constitutes the system Jo’ = 0.

At this point we associate with the boundary conditions (2.5) a set

of polynomial boundar y-functions

(3.7) b (z ,~c) E (zc~~~ - o(O) ]K M+l , - 0,.. . , r-1.
It j.’O It Mi

• Since

= ~ (zc (
~~ ~~~~~~ 

(lL+ l)K lL 4 i~~,
Mi Mi

then system (3.6) may be written as

k ma~~~~~b ( z ,~~ )
(3.8) E E It 0, It —

Oh’l~~ 0 ~~a L
Thus the coefficient matrix J take s the form

(3.9a) J — (B(z , Kl,ml) , . . . , B(a ,~ck,mk)]

where the B(z , Ka,ma), 1 c a < k , are rx ma blocks given by

1~ — 
— -—- — —.~~_~a__ — —
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(3.9b)

• b0~a ,~ ) —1
— b1(z,K) , ~~~~

.. b1(Z,K) 
~~~~~~~~~~~~~~~~~~~~~ 

b
1

(z,K)

~ r—i (~’~) 
b r_i (5~c) !~r-l~”~ ~~

Defining a ~~~~~~~ of r to be any set of positive integers (m1 ~~
• which satisfies m1+ ... + m~ — r , we state

THEOREM 3.2. Approximation (2.4)(2.5) is stable if for every a

with Iz i ~ 
1, every partition (m~)~~1 of r, and every set of distinct

values with 0 < I k il < 1,

(3.10) detf B (z,Kl,m~),...,B(z,
NN ,n~

)] ~ 0.

Proof. Take an arbitrary z~ with Ia~I > 1 end let c0(50),

1 < a c k, be the distinct roots of (3.1), each with multiplicity a~(a0).

Since (%(a0))~,1 is a partition of r, then (3.10) holds for our

and ma(so). Thus, by Lemma 3.1, a0 is not an eigenvalue or a,
and by Kreias Main Theorem in (ii), stability follows.

Since the determinant in (3.10) depends entirely on the boundary function s

• (3.7), Theorem 3.2 is scheme-independent . Thus in applying the theorem,one

avoids the inherent difficulty of solving the characteristic equation (3.4).

4. Translatory Boundary Conditions

In this section we return to consider the approximation (2.4) (2.6) where

the boundary condit ions are tra nslatory.

The bounda ry-functions associated with (2.6) are

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ •
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b (s,K) — E (ec~~ - c~0)),~It~i, It •It

Thus writing b(z , ic) a b0(s,ic) we have

b~(a , ,c) — ic~ b(~ ,ic) , V — 0,..., r—1 .

Consequently, if (mi)~~1 is a partition of r , then the r x r matrix

(4.1) [B( z, K1,m1) , .. . , 3(a , ,r~ ,i,~,~)]

in (3.10) is given by the r x m i blocks
b(a ,K) b(z,ic) 

• b(a,ic)

Ic b(a , ,c) K b(a,ic) ~~i ’ ic b (~,.c), ,...,

-

The fact that (4.1) is determined now by the single boundary-function

b(I ,K ), implies the following significant simplificat ion of Theorem 3.2.

~‘}~Op.D.1 4.1. Approximation (2.4)(2.6) is stable if for

every a with I at , 1 and ic with 0 < f ic < 1, we have

• (4.2) b(a,ic) • E (ac~1) - c~0))tc1 ~ 
0.

3.0

Proof. Take an arbitra ry z with a > 1, * a partition (mj  )~~
of r, and distinct values ci, 1<  i < N , with 0 < I~ I <1. In

order to prove stability, it suffices, by Theorem 3.2, to verify (3.10).

For this purpose, let * 

* 
,

K~
r-l

(4.3) E m..-l — 0 ,
M 0  - 1~

_ _ _ _ _  
- *

~IIN

— ----*--- •-~ —*~- - - -~
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be a vanishing linear combination of the rows of (4. 1). The vector

relation in (li-.3) consists of r scalar equations,

f r.]. )
‘y -~~ -~~~ (ic It b(z , ic) )  

~ 
• — 0, l c i <N , 0 c j < m ~ -1,

It 
~ic’1 ) IC ICj  -

which we write as

~i f  r r- l
(4.4) —~.jb(z,ic) I E y K It I~ , 1< i < N , 0 < 3 <  m~ -1.

~Ic 1 L~ &=0 It j  I c K i 
— —

Since 0 < I’c~j 
< 1, then by hypothesis, the expression in the left

brackets of (4.4) satisfies

/ 0, 1< i < N .

- Thus , expanding (4.4) by Leibniz’ rule and using induction on 3 > 0,
we find that the sum in (4 .4) have vanishing derivatives at K = r~, i.e.,

dj r r_l
~~ ~

‘M i?I = 0 , l < i < N , 0 < j < m  -1.
dic L It= 0 i K=Ic j . 

— — I

We conclude that the polynomial

r-1
P(ic) E E ‘y

It

which is of degree r -l at~~ st, has r roots; Ici~ 
1 < i < N , each with

multiplicity m~. Hence, P(ic) ~ 0 and the coefficients ‘y must vanish. *

By (4.3), therefore, the rows of (4.].) are linearly independent, so (3.10)

holds , and stabilit y follows.

Before turning to the proof of the Main Theorem (Theorem 2.].) we note

that Theorem 4.1 applies also to single-leveled boundary conditions . For

example , we can Imediately obtain the following result of Ere iss (3] (see

also (1]): Let the bounda ry conditions be determin ed by extrapolation of

arbitrar y degree s - i , i.e. ,

2Z .

~
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(4.5) E (~)(—1)3v ~3(t) — 0, — 0,..., r—l .
• 

- 3—0 14

The associated boundary-function is

- 

b(ic) - E  (~)(-i)~~~ =• 3=0 - *

Thus b(ic ) / 0 for 0 < I K 1  < 1, and by Theorem 4.1, (2.1i)(4.5) is stable.

Proof of Theorem 2.1. The amplification factor 
~~

) of the bounda ry-

scheme (2.7) is given by j
~(O) (~)/~(1) (~ ), ~(a) (~ ) = ~~~~~~~~~ a = 0,1.

By (2.8) we have ~(1) (~) / 0, thus 
~
(
~
) is well defined. Since the

boundary-scheme is stable then I~~)I < 1, so finally

(4.6) IT (
~)I ~ I~ 

(
~)I ~ 0 V~.

The boundary-function associated with (2.6) satisfies

b (z,ic) = E (zc~
’) — c~0)),c1 = zT~~ (K) - T~~~( tc) .

3=0

So, for IzI > 1, we use (4.6) to find that

Ib(z,e~ )I = IzT~
’
~(e~~) — T~°’(e~~) I  = Iz ’~

(
~) .— .~(O)(~)~

• ~ IzI~ I~
(1)(~), - I~

0) (~~I >0 .
That is, the equation

(4. 7) b(~,ic) = 0 with Izi > 1, *

baa no roots ,c with lii — 1. Since the roots of (11.7) are continuous

functions of a, we conclude that the number of ic with I ic <1 is
fixed for a~ > 1, and can be determined by considering large values of

at .  Writing (4.7) in the form 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ : : - -~ _____
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p

T(1)(ic) — Z 1T(0) (IC ) — 0,

we let Izi —~ and. use (2.8) to find that (4.7) has no ‘cots in th-~ .4ait

disc. In other words, if Izi > 1 and b(a,oc) — 0, then ic must s*tiafy

I’d > 1. By continuity therefore, if Izi > 1 and b(a ,ic) - 0, then

> 1; i.e.,

b(i , ic) / 0, VIal ~ 1, lid < 1.

This implies (4.2), and Theorem li.l completes the proof.

p
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